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Abstract

To design feedforward controllers for robots, a model that includes friction

is important. However, friction is hard to identify, which causes uncertainty in

the model. In this paper we consider rest-to-rest motions of robotic arms that

use only feedforward control. We show that it is possible to design feedforward

controllers such that the final position of the motion is robust to uncertainty

in the friction model. We studied a one DOF robotic arm in the horizontal

plane, of which we show analytical, simulation and hardware results and we also

show simulation results of a planar two DOF arm. Our friction model includes

three types of friction: viscous, Coulomb and torque dependent friction. The

results show that it is possible to eliminate the sensitivity of the final state to

uncertainty in the three types of friction.

Keywords: Feedforward control, open loop control, robotic arms, model

uncertainty, friction

1. Introduction

We are fascinated by the question what is still possible without feedback on

robotic arms. Control without feedback is called feedforward control or open

loop control. Although intuition tells us that accuracy in the presence of model

uncertainty and disturbances using only feedforward control is hopeless, humans
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Figure 1: A schematic representation of the subject of this paper. The one DOF robotic

arm in this picture has to perform a rest-to-rest motion: move from the initial to the goal

position. The controller is a feedforward controller, which means that the state (i.e. position

q and velocity q̇) is not used to determine the control signal. The control signal is a current

I, which is only a function of time. The resultant torque on the arm is the motor torque

minus the friction torque. In this paper, we investigate the sensitivity of feedforward motions

to uncertainty in the friction parameters. These model uncertainties usually cause the arm

to end up in a different state than the goal state. We aim to eliminate this error in the final

state. (figure from [1])

use feedforward control for fast motions and are still able to perform their tasks

accurately [2]. In this paper, we present the surprising result that the final state

of rest-to-rest motions of robotic arms can be made insensitive to uncertainty

in the friction model. Possible fields of application include environments with

heavy radiation, such as nuclear disaster areas or space, where feedback might

be difficult and applications in which a large amount of agents are controlled

with one input signal [3].

Generally, feedforward control laws use models of the system to compute

control signals. These models often include friction, which is hard to model
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accurately despite the amount of literature on friction identification [4, 5, 6, 7, 8].

Such inaccurate modeling introduces model uncertainty. Usually, the controller

relies on feedback to compensate for uncertainty in the model. We are interested

if it is also possible to incorporate robustness of the final position of motions

to model uncertainty in the feedforward controller of robotic arms. As case

studies, we use robotic arms with one and two DOF in the horizontal plane that

are controlled with only a feedforward controller.

Multiple researchers share our fascination for only feedforward control and

have shown positive results. Firstly, Schaal and Atkeson showed that it is pos-

sible to perform robot juggling with an open loop controller [9]. Seyfarth et al.

showed a similar example in which feedforward control schemes for the swing

leg retraction improved the stability of running in a humanoid robot [10]. And

finally, Mombaur et al. showed that even stable walking and running are possi-

ble by creating open loop stable periodic motions [11, 12]. Although interesting,

these researches did not account for model uncertainty.

Also robustness of feedforward controllers to model uncertainty has been

studied before. Firstly, Singhose, Seering and Singer showed that input shaping

to reduce vibrations can be performed in open loop while being robust to uncer-

tainty in the natural frequency and damping of the system [13, 14]. Secondly,

Akella and Mason showed that the result of several pushing actions in planar

manipulation can be made robust to uncertainty in the initial position of the

object [15]. Thirdly, Becker and Bretl showed that using open loop control on

differential drive robots, the final position of a motion can be made robust to

uncertainty in the wheel diameter [16]. They also showed that this works for

balls with an uncertain diameter that roll over a moving plate [17]. All previous

examples of feedforward control with robustness to model uncertainty concern

systems with first order dynamics. Recently we showed the potential of using

feedforward control on robotic arms with an inaccurate model, which is a sec-

ond order system [1]. There is one technique all these examples use: a certain
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task redundancy1 is exploited in order to make the controller robust. We are

continuing on the last example, by exploiting task redundancy in rest-to-rest

motions of robotic arms.

Exploiting the task redundancy to compensate for model uncertainty has

also been observed in humans. The human nervous system introduces large time

delays of typically 150 ms [18, 19] and therefore humans must partially rely on

feedforward control [2]. Since the internal model of humans is inaccurate [20]

they exploit task redundancy to minimize the error due to model uncertainties.

Error-minimizing feedforward signals have been reported in eye movements [21],

but also in the games of darts and skittles [22, 23, 24, 25].

The task we consider in this paper is a pick-and-place task, which also pos-

sesses redundancy (see Fig. 1). The task consists of rest-to-rest motions where

only the initial and final position matter and the path in between can be chosen

freely. We demonstrate that by choosing the right feedforward controller, it is

possible to essentially eliminate the sensitivity of the final state to uncertainty

in the friction model.

We extend our research in [1] in three ways. Firstly, we start with an analyt-

ical approach to gain more understanding of the principles behind feedforward

control of robotic arms with friction model uncertainty. Secondly, we show im-

proved results on a one DOF simulation model with multiple uncertainties at the

same time. And thirdly, we show simulation results on a two DOF simulation

model. For completeness, we also show the hardware results from [1].

The rest of this paper is structured as follows. Section 2 provides the problem

formulation of the problem that is considered in this paper. Sections 3, 4 and

5 show analytical, numerical and hardware studies respectively, on one and two

DOF systems. The paper ends with a discussion in section 6 and a conclusion

in section 7.

1Task redundancy means that there are multiple ways to fulfill the task perfectly.
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2. Problem formulation

This section describes the problem of feedforward control with friction model

uncertainty. First, the problem is formulated in general terms, then two case

studies are introduced that will be studied in this paper and finally, the task

description of the arms will be discussed.

2.1. General problem

We consider mechanical systems of the form

ẋ(t) = f(x(t), u(t), p) (1)

where x is the state containing the positions q and the velocities q̇, u is

the input and p are the friction parameters. The motions we consider have an

initial state x0 and a final state xf , leading to the following initial condition

and motion constraint:

x(0) = x0 =





q0

q̇0



 (2)

x(tf ) = xf =





qf

q̇f



 (3)

where tf is the time to move. We now define y as the state at tf , which is

a function of x0, u and p:

y(x0, u(t), p) = x(tf ) = x(0) +

∫ tf

0

f(x(τ), u(τ), p)dτ (4)

The goal is to make the final state of the arm insensitive to the friction

parameters. We define sensitivity as:

Sij =

∣

∣

∣

∣

∂yj(x0, u(t), p)

∂pi

∣

∣

∣

∣

(5)

S(u(t)) =

i=k
∑

i=1

j=n
∑

j=1

cijSij (6)
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    (a) One DOF         (b) Two DOF               (c) One DOF 

          top view                 top view                       3D view

Figure 2: The three configurations we studied: (a) Simulation models of a one DOF arm in

the horizontal plane. (b) A simulation model of a two DOF system in the horizontal plane.

(c) Hardware experiments on a one DOF robotic arm to show that the principles found in the

simulation studies work on a hardware setup.

where Sij is the sensitivity of final state j to parameter i, S is the total

sensitivity and cij is the weighing factor corresponding to parameter pi and the

jth state. In this paper we weigh all sensitivities equally, meaning that cij=1 for

all i and j. The sensitivity Sij is equal to zero when the final state j is insensitive

to the friction parameter pi. Note that this definition differs from the classical

definition of sensitivity in control [26]. This goal can be transformed into an

optimization as follows:

minimize
u(t)

S(u(t))

subject to |u(t)| ≤ umax ∀t

q(tf ) = qf

q̇(tf ) = q̇f

(7)

where k is the number of friction parameters, n is the number of states, and

umax is the maximum input.
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2.2. Case studies

There are two case studies we consider in this paper: a one DOF arm and a

two DOF arm, both in the horizontal plane (see Fig. 2a and 2b). We also show

results from hardware experiments on a one DOF arm to confirm the results

from simulation (see Fig. 2c).

The equations of motion of the models will be given in the sections discussing

the specific models (sections 3.1, 3.2, 4.1 and 4.2). In all models, the actuation

torque applied by the DC motors on the joints is equal to:

T = nktI (8)

Where T is the actuation torque kt is the motor constant, n is the gearbox

ratio and I is the current through the motor. Since we use motor controllers

with current control, the current is used as the input u.

Our frictional model consists of three commonly used types of friction: vis-

cous friction, Coulomb friction and torque dependent friction:

Tp =







pv q̇ + sign(q̇)(pc + pt|T |) for q̇ 6= 0

min(pc + pt|T |; |T |)sign(T ) for q̇ = 0







(9)

where Tp is the frictional torque, pv is the viscous friction coefficient, pc is

the Coulomb friction constant and pt is the torque dependent friction coefficient.

Torque dependent friction is less commonly used than the other two. The way

we use it is similar to the force dependent friction term in [5]. We included

this type of friction because model identification showed the presence of torque

dependent friction.

2.3. Task description

We consider rest-to-rest motions, which are very common motions for robotic

arms. For instance, in industry pick-and-place tasks depend on accurate rest-to-

rest motions. In practice, a robotic arm performing rest-to-rest motions has to

move between a number of positions. In the analytical studies, we will keep the
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task description generic. In the numerical results, we will show specific results

where the one DOF arm moves from 0 rad to 1 rad and the two DOF arm moves

from [−0.5, 0] rad to [0.5, 0] rad, all with a time to move of tf = 1s. In the one

DOF case, we will analyse how the results change when changing the task. This

will show that other initial and goal positions lead to identical results as long

as the distance between the two does not exceed a certain threshold.

3. Analytical Studies

In this section, we study the problem analytically, in order to understand

the principles behind feedforward control of robotic arms with friction model

uncertainty. For this purpose, we study two one-DOF models: a model with

only viscous friction and a model with only Coulomb friction. The first model

is a negative example, showing that for this model uncertainty in the viscous

friction cannot be compensated for. The second model is a positive example,

showing that uncertainty in the Coulomb friction can be compensated for.

3.1. With only viscous friction

In the one DOF model with only viscous friction, the equations of motion

are:

d

dt





q

q̇



 =







q̇

1

Jjoint
(ktnI − pv q̇)






(10)

where Jjoint is the inertia about the joint. If we now integrate the second

row of this equation with respect to time we get

Jjointq̈ = ktnI(t)− pv q̇ (11)

Jjoint∆q̇ =

∫

ktnI(t)dt− pv∆q = 0 (12)

where ∆q is the change in angular position and ∆q̇ is the change in angular

velocity. ∆q̇ is equal to zero since we start and end with zero velocity. Here, I(t)
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can be chosen freely, as long as the motion satisfies the constraints in (7). Sup-

pose that I∗(t) is a feedforward control signal that satisfies the constraints and

add δ(t) to the signal, which represents all possible changes in the feedforward

control signal:

∆q =
ktn

pv

∫

(I∗(t) + δ(t))dt (13)

=
ktn

pv

(
∫

I∗(t)dt+

∫

δ(t)dt

)

(14)

Since the final position of the motion should not change in order to satisfy

(7), all possible changes δ(t) of the feedforward control signal are constrained

by the following equation:

∫

δ(t)dt = 0 (15)

Combining (14) and (15), leads to

∆q =
ktn

pv

∫

I∗(t)dt (16)

From (16), we see that
∂∆q

∂pv
is independent of changes of the feedforward

control signal that reach the same end state for the nominal value of pv. This

shows that all the changes in the feedforward control signal that satisfy the

constraints, do not influence the sensitivity of the final position of the arm to

the viscous friction.

Apparently, on the system we are considering it is impossible to achieve the

goal of this paper: sensitivity of the feedforward motion to uncertainty in the

friction model is independent of the chosen feedforward controller.

3.2. With only Coulomb friction

So now consider a one DOF system with only Coulomb friction. In this

system, the equations of motion are:
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d

dt





q

q̇



 =







q̇

1

Jjoint
(I(t)kt − pcsign(q̇))






(17)

The changes in velocity and position are equal to:

∆q̇ =

∫

I(t)ktn

Jjoint
dt− pc

∫

sign(q̇)

Jjoint
dt (18)

∆q =

∫∫

I(t)ktn

Jjoint
dt2 − pc

∫∫

sign(q̇)

Jjoint
dt2 (19)

In (18) and (19), we see that there are three components that influence the

final position of the arm: the current through the motor, the sign of the velocity

and the amplitude of the Coulomb friction pc. Note that the Coulomb friction is

a bang-bang torque. A change in the Coulomb friction constant has two effects:

1. The amplitude of the bang-bang Coulomb friction torque scales

2. The switch times of the sign(q̇) function change.

If we assume the second effect is negligible, then the total effect of changing

the Coulomb friction is a scaling of the frictional term in (18) and (19). If we

now choose our feedforward control signal such that:

∫

sign(q̇) dt = 0 (20)

and

∫∫

sign(q̇) dt2 = 0 (21)

then a change in the amplitude of the Coulomb friction torque has no effect

on the final position and velocity.

The assumption above is not valid, as we will now show with an example, but

does lead to small values of the partial derivatives in (5). To show this, we used a

simulation of a robotic arm of which the parameters are given in Table 1. Fig. 3
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Figure 3: A simple example of a motion that satisfies the requirements to eliminate the effect

of an uncertain Coulomb friction on the final position and velocity. Both the single and the

double integral of the Coulomb friction over the time are approximately equal to zero. They

are not exactly equal to zero, because the amplitude of the Coulomb friction also influences the

zero crossing of the angular velocity. (a) The current through the motor as function of time.

(b) The position of the arm as function of time using the nominal friction values. (c) The

integral of the Coulomb friction over time. (d) The double integral of the Coulomb friction

over time. (e) the final position of the arm as function of the Coulomb friction parameter

change. (f) the final velocity of the arm as function of the Coulomb friction parameter change.

shows a motion that satisfies Eqs. (20) and (21). The motion has three phases:

first, it starts with a negative velocity, second, it continues with a positive

velocity and finally, it ends with a negative velocity again. Figs. 3e and 3f show

that the derivatives of the final position and velocity to the Coulomb friction

are approximately zero (0.009 (Nms)−1 and 0.012 (Nm)−1). The derivatives are

not exactly equal to zero because of the change in switch times.

11



Table 1: The model parameters of the arm with only Coulomb friction. All inertial terms are

combined in the inertia about the joint (Jjoint).

Parameter Symbol Value

Viscous friction pv 0 Nms/rad

Coulomb friction pc 0.19 Nm

Torque dependent friction pt 0 %

Inertia Jjoint 0.17 kgm2

Motor constant kt 26.7 mNm/A

Gearbox ratio n 1:54

4. Numerical Studies

In the previous section, we showed analytical results for a one DOF system

with only viscous friction or with only Coulomb friction. However, when the

complete friction model is considered (i.e. viscous, Coulomb and torque depen-

dent friction) or when the dynamics are non-linear, obtaining analytical results

becomes infeasible. Therefore, in this section, we perform numerical studies

with a complete friction model (viscous, Coulomb and torque dependent fric-

tion). Although we showed in the previous section that in a system with only

viscous friction, uncertainty in the viscous friction cannot be compensated for

by the choice of the feedforward controller, in this section we will show that

compensation is possible when the two other friction terms are non-zero. The

two systems we consider are a one DOF robotic arm and a two DOF robotic

arm. We will show that on both systems, the sensitivity to all three friction

model uncertainties can be eliminated.

4.1. One DOF robotic arm

4.1.1. Method

The equations of motion for the one DOF model with complete friction

model are given by
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Table 2: The model parameters of the arm with the complete friction model, based on a

system identification of our one DOF arm. All inertial terms are combined in the inertia

about the joint (Jjoint).

Parameter Symbol Value

Viscous friction pv -0.05 Nms/rad

Coulomb friction pc 0.19 Nm

Torque dependent friction pt 22 %

Inertia Jjoint 0.17 kgm2

Motor constant kt 26.7 mNm/A

Gearbox ratio n 1:54

Maximum current Imax 10 A

d

dt





q

q̇



 =







q̇
(

ktnI − Tp

Jjoint

)






(22)

where Tp is the frictional torque from Eq. (9). For the one DOF numerical

study, we used the parameters values in Table 2, which are based on a system

identification of the robotic arm in Fig. 2c.

The sensitivities in Eq. (5) are calculated using a finite difference approx-

imation, with a 0.1% difference in the model parameters. In the numerical

optimizations, we parameterized the controller as a piecewise constant current

signal with N controller steps of equal length. An example of an input signal

with N = 3 is shown in Fig. 4. These N controller steps are used as decision

variables in the optimization in Eq. (7), constrained by Eq. (7). Since numerical

optimization does not exactly reach zero, we set a threshold below which we call

the outcome of an optimization equal to zero. This threshold is equal to the

function tolerance of the optimization algorithm, which was set to 10−6.

We used two techniques to speed up the optimizations. Firstly, instead of

propagating the equations of motion using an ODE solver, we used the fact

that the equations of motion of this one DOF system are piecewise linear, with

switching times at changes in control signal and when the velocity crosses zero.
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Figure 4: An example of a feedforward control signal and the motion that results from the

controller. The signal represents the current through the motor as function of the time. There

are 4 set points in total (t0 . . . t3) and the current is constant in between the set points. The

duration of the signal is 1 second. (b) Shows the position of the arm as function of time

using the nominal friction values. (c) and (d) show the final position and final velocity as

function of the parameter value of the Coulomb friction. The green dotted lines show the

partial derivatives of the final position and velocity with respect to the parameter value. The

goal of the optimization is to minimize a weighed sum of these derivatives

Therefore we can calculate the exact end state with a number of calculation

steps smaller than 2N . Secondly, we made use of the fact that the goal velocity

of rest-to-rest motions is zero (q̇f = 0). Due to the Coulomb friction in the

system, an infinitely small velocity will be reduced to zero by coasting (u = 0)

for a small amount of time. Therefore, in order to satisfy
∂q̇f

∂p
= 0, we let the

system coast from t = tf − 0.05s to t = tf . Now the optimization has to satisfy

two equality constraints (see Eq. (7)) and has to minimize one partial derivative

per uncertain parameter (
∂qf

∂pi
). Therefore, we used N = 2 + k where k is the

number of uncertain parameters.

The optimizations were performed with a multistart of the MATLAB func-

tion fmincon and were run on an Intel DuoCore i7-2620M CPU.
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4.1.2. Results

Firstly, we obtained results with only one uncertain parameter at a time

and thus N = 3. The 50 starts of the optimization had an average duration

of 26 ms. In all the three optimizations, the partial derivatives (Eq. (5)) were

all smaller than 10−9 which is smaller than the function tolerance of the op-

timization algorithm and are therefore considered zero. Lowering the function

tolerance to 10−12 did lower the partial derivatives to 10−13, while the motions

did not change significantly. We chose to use the slightly larger function toler-

ance of 10−6 to keep the computational cost low. The results with an uncertain

Coulomb friction are shown in Fig. 5. It shows that the final position of the arm

is approximately 1 rad, even if pc changes with 100% of the estimated value.

Furthermore, it shows that the arm first moves away from the goal position,

before moving towards it. We observed this behavior in all the three cases:

with an uncertain pv, pc and pt. Although optimization results can be hard to

interpret, we saw the same behavior in the previous section in Fig. 3. Therefore,

in all the three cases, probably some kind of condition as in Eq. (19) is satisfied.

Fig. 6 shows the partial derivatives as function of the goal position. It shows

that every partial derivative is zero up until a certain threshold of the goal posi-

tion. This threshold is smallest for the viscous friction (approximately 1.8 rad),

is slightly larger for the torque dependent friction (approximately 2.3 rad) and

is largest for the Coulomb friction (approximately 6 rad). These values depend

on the amount of friction, the inertia and the maximum torque. The latter

is a combination of the motor constant, the gearbox ratio and the maximum

current.

Secondly, we obtained results with three uncertain parameters at the same

time and thus N = 5. The 100 starts of the optimization had an average dura-

tion of 53 ms. The results of the optimization are shown in Fig. 7. We again see

that the arm first moves away from the goal position. This was to be expected

since the three separate optimizations showed this behavior. Furthermore, Fig. 7

shows that the final position is most sensitive to an uncertain torque dependent
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Figure 5: The results of the optimization with an uncertain Coulomb friction. (a) The current

through the motor as function of time. (b) The position of the arm as function of time using

the nominal friction values. The red striped lines show the position over time with -40% and

+40% parameter change. (c) The final position as function of the parameter value of the

Coulomb friction. (d) The final velocity as function of the parameter value of the Coulomb

friction. The two bottom graphs show that the partial derivatives of the final state with

respect to the parameter are zero.

friction. The partial derivatives (Eq. (5)) were all zero.

4.2. Two DOF robotic arm

4.2.1. Methods

We performed the same optimizations as on the one DOF model on a two

DOF SCARA type arm model (see Fig. 8), to see how the results extrapolate

to a robotic arm with non-linear dynamics. We used the TMT method [27] to

obtain the equations of motion of the two DOF simulation model, which are

too long to include in this paper. In the two DOF model, a motor actuates the

absolute angle of the second joint. Since approximately all friction is caused by

the motor, the friction in the second joint is a function of the absolute angular

velocity of that joint. The friction between the first link and the second link is

assumed to be zero.
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Figure 6: This figure shows the partial derivative of the goal position to the parameter changes

as function of the goal position. The partial derivatives for all the three parameter variations

are zero until a certain threshold on the goal position.

Table 3: The model parameters of the two DOF arm.

Parameter Symbols Values Unit

Viscous friction pv1, pv2 -0.05, -0.14 Nms/rad

Coulomb friction pc1, pc2 0.19, 0.60 Nm

Torque dependent friction pt1, pt2 22, 32 %

Inertia about COM JC1, JC2 0.023, 0.178 kgm2

Mass upper arm m1, m2 0.809, 1.502 kg

Length of link upper arm l1, l2 0.41, 0.43 m

Position COM lC1, lC2 0.07, 0.33 m

Motor constant kt1, kt2 26.7, 28.1 mNm/A

Gearbox ratio n1, n2 1:54, 1:198

Maximum current Imax1, Imax2 10, 10 A

The parameter values of the two DOF model are listed in Table 3. In this

model, there are multiple parameters that influence the inertia of the upper

and lower arm: the inertias about the centers of mass (COMs), the lengths

of the arms, the masses of the arms and the positions of the COMs. The 3
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Figure 7: The results of the optimization on a one DOF arm with three uncertain friction

parameters at the same time. (a) The current through the motor as function of time. (b)

the position of the arm as function of time using the nominal friction values. (c) The final

position of the arm as function of the three parameter changes. The bottom graph shows that

the partial derivatives of the final position with respect to the three parameters values are

zero.

friction parameters per joint lead to 6 uncertain parameters and thus 12 partial

derivatives that should be equal to zero. Therefore, on both joints we took

N = 8.

4.2.2. Results

Figs. 9c and 9d show the final positions of the two arms as functions of the

parameter changes. The values of the partial derivatives are smaller than the

function tolerance of the optimization and are therefore considered zero.

Figs. 9b shows the positions of the two joints as functions of time. The first

joint shows the same behavior as the one DOF system: it first moves away from

the goal position before moving towards it.

One optimization of the two DOF system takes about 10 hours, with the

current state of technology, which is too long to be applicable. We will discuss

this issue in section 6.
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Figure 8: Top view of the two DOF SCARA type arm model. The second joint is actuated

through a parallel mechanism (not shown in this figure), such that the angle of the second

arm is an absolute angle. The friction acts on the absolute angles of the joints.

5. Hardware Study

In the previous sections we saw that in theory, feedforward controlled mo-

tions of our robotic arm can be made insensitive to friction model uncertainty.

In this section, we show that this is also possible on the robotic arm itself. We

verify the results with an uncertain Coulomb friction on our one DOF robotic

arm and show that the sensitivity to this friction uncertainty can be eliminated

to negligible levels. Firstly, we will explain the test set up, secondly, we will

explain our test protocol and finally, we will show the results.

5.1. The robotic arm

Fig. 2c shows a picture of the one DOF robotic arm, which is the same arm as

in [28], but without the spring mechanism. The DOF consists of an 18x1.5mm

stainless steel tube connected with a joint to the ground. A weight of 1 kg is

connected to the end of the tube, which represents the weight of a gripper plus

a product. The motor is placed on a housing and AT3-gen III 16mm timing

belts are used to transfer torques within the housing. The joint is actuated by a
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Figure 9: The results of the optimization on a two DOF arm with three uncertain friction

parameters at the same time. (a) The currents through the motors as function of time. (b)

the positions of the joints as function of time using the nominal friction values. (c) The final

position of the first joint as function of the six parameter changes. (d) The final position

of the second joint as function of the six parameter changes. The two bottom graphs show

that the partial derivatives of the final position with respect to the parameters values are

approximately zero.

Maxon 60W RE30 motor with a gearbox ratio of 18:1. The timing belts provide

an additional transfer ratio of 3:1. The model parameters as shown in Table 2

are based on a system identification of this robotic arm.

To change the Coulomb friction, we designed a mechanism that adds Coulomb

friction by clamping a nylon sleeve bearing on the motor axis. The Coulomb

friction can be increased by tightening the screw of the clamping mechanism.
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Every time after we changed the Coulomb friction, we ran a system identification

to determine the amount of friction that was added.

5.2. Test protocol

We performed an online optimization to find the feedforward controller that

is most robust to uncertainty in the Coulomb friction. This optimization con-

sisted of testing a grid of 32 different feedforward controllers and selecting the

best one. Each feedforward controller had three current set points of which the

first one was determined by a grid of 32 set points. The other two set points

were determined by the constraints on the final position and final velocity in

simulation.

Instead of using the derivative as a performance measure, we used the root

mean squared (RMS) of the position errors using three different values for the

Coulomb friction: 0.19 Nm, 0.22 Nm and 0.25 Nm.

5.3. Results

Fig. 10 shows the current and the position as function of time for a typi-

cal experimental run. The two controllers shown are the two resulting in the

minimum and maximum errors in the hardware experiments. It also shows that

the current profiles with minimal and maximal error in hardware experiments

correspond to the current profiles with minimized and maximized sensitivity in

simulation. For systems with more DOFs it is less feasible to perform a grid

search and thus the current profiles from simulation should be used.

The minimal and maximal RMS were 0.002 rad and 0.092 rad respectively.

These hardware experiments confirm the main conclusions of the simulation

study: the errors due to uncertainty in the friction model can be reduced to

approximately zero (at least for the Coulomb friction). Furthermore, again the

optimal motion first moves in negative direction before moving towards the goal

position.
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Figure 10: A typical example of the data obtained from hardware experiments. This fig-

ure shows the minimized and maximized motions for a changing Coulomb friction. a) The

feedforward current as function of the time. The solid lines correspond to the motions with

minimized and maximized error in hardware experiments. The dashed lines are optimized

current profiles in simulation. This graph shows that the current profiles optimized in sim-

ulation are the same as the current profiles with minimal and maximal error in hardware

experiments. b) The position of the arm as function of the time. We clearly see that the

spread in the final position of the minimized motion is smaller than that of the maximized

motion. For the minimized motion, it is hard to distinguish the three lines, for the maximized

motion the spread is clearly visible. (Figure from [1])

6. Discussion

In this study we researched motions of a one and two DOF robotic arm,

controlled by a feedforward controller. The task consisted of fixed initial and

goal positions and a fixed time per stroke. We showed that the choice of the

motions in between the initial and goal positions is important for the sensitivity

of the final state to friction model uncertainty. For all systems, this sensitivity

can be eliminated.
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6.1. Implications

The results of this study are important to consider when implementing feed-

forward control. The correct use of feedforward control improves the perfor-

mance of the system and this study shows that the performance can even be

improved in such a way that the friction parameters do not have to be known

accurately. The interesting result is that all optimized motions do not move

from the initial to the goal position directly, but first move away from the goal

position. We showed why this strategy is advantageous in one DOF with an

uncertain Coulomb friction and we expect that similar explanations hold for

other friction uncertainties and systems.

This study also has implications on the field of human motion control. Re-

cent studies in the field of human motion control focused on the uncertainty

(i.e. noise) in the control signals [21]. It would be interesting to research the

accuracy of the internal models of humans and the influence of this accuracy on

the motions humans choose. Another interesting topic for future research would

be the influence of noise on the performance of feedforward control in robotic

systems.

The one DOF system is a system with linear dynamics and non-linear friction

and the two DOF system is a system with non-linear dynamics. We expect that

the results of this research can be extrapolated to a variety of other systems. We

did not consider gravity in this study. Adding DOFs that are influenced by the

gravity adds non-linearity to the system. We expect that sensitivity minimizing

feedforward controllers can still be found on such systems.

6.2. Linearization

In this study, we used a linearization of the influence of a parameter on the

final state as a measure of the performance of a feedforward controller. This

linearization only accounts for infinitely small parameter changes and thus it

does not tell anything about finite parameter changes. However, many of our

results showed that the errors in the final position were even small with large

parameter changes (see e.g. Fig 5 and Fig. 7). A first alternative to linearizing
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is to sample a couple of parameter values around the estimated value (e.g.

estimated value -10% and estimated value +10%) and minimize a sum or RMS

of the errors at those parameter values, as we did in [1]. However, such an

optimization takes longer since more decision variables are needed. A second

alternative would be to also take into account higher order partial derivatives,

as in [16]. We do not expect that this will lead to a better performance since

the results already show a low second order derivative (see Figs. 5, 7 and 9).

6.3. Adding feedback

In most applications, some kind of feedback is available. Combining a sep-

arately designed feedback controller and a robust feedfoward controller will in

general not lead to good results, since in general the superposition principle does

not hold. An approach could be to first design a feedback controller and then

optimize the combination of that controller with a feedforward controller to be

robust to model uncertainty. Although showing the feasibility of this approach

is part of future work, an interesting approach was recently proposed by Ansari

and Murphey [29].

6.4. Optimization duration

For the one DOF system, the duration of one optimization was 5.3 seconds.

This is still too slow for performing optimizations while the arm is performing

its task. However, there are obvious ways to solve this problem, like creating a

database of motions and only use the optimization to adjust the closest motion

from the database to fit the required motion. Such an optimization should not

require a multistart and should therefore take about 50 ms for the considered

system. In general, the optimization would be fast enough if the optimization

time is shorter than the time to move, which in our example was 1s.

A problem arises when the systems become more complex: more DOFs

or more uncertain parameters. An example of this is the two DOF system in

section 4.2, for which an optimization had to run for 10 hours to find a reasonable

solution. This problem is caused by the large number of local minima in the
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optimization function. These local minima are caused by a combination of

highly non-linear dynamics and a relatively large number of decision variables.

Although this problem is suited for parallelization, it would require more than

36000 cores to speed up the optimization to 1 second per motion. Therefore,

the best approach would be to search for methods that do not have this large

amount of local minima.

Because of this large optimization time, we did not perform an elaborate

two DOF study on the influence that the initial and goal positions have on the

results. However, trying a couple of random tasks showed that similar results

can be obtained for other tasks. We expect that what we showed for the one

DOF system, also holds for the two DOF system: the sensitivity can be reduced

to zero if the distance between initial and goal positions does not exceed a certain

threshold.

6.5. Other optimization goals

In this paper, we optimized feedforward controllers such that the sensitivity

to friction model uncertainty was minimized. However, both in industry and in

human motion control, other cost functions are used as well. Two common cost

functions are the time per stroke and the energy consumption per stroke. The

question that remains is how these commonly used cost functions perform with

an uncertain friction model in comparison to the results of the optimization in

this paper.

Fig. 11 shows the energy and time optimal motions of the one DOF system

with a complete friction model. The time optimal torque profile was obtained

by minimizing the time the system reaches the goal state. The energy optimal

torque profile was obtained by minimizing the integral of the electrical motor

power over time (see [28]). The values of the partial derivatives are shown

in Table 4. This shows that both the energy and time optimal motions are

very sensitive to friction model inaccuracies, and so a trade-off has to be made

between energy, time and robustness.
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Figure 11: The time and energy optimal motions as function of time. (a) The current through

the motor of the time optimal motion. (b) The current through the motor of the energy

optimal motion. (c) The position of the arm of the time optimal motion. (d) The position of

the arm of the energy optimal motion. The red striped lines show the position over time with

-40% and +40% parameter change.

Table 4: The partial derivatives of energy and time optimal motions

pc pv pt

Energy optimal
∂q

∂pi
-0.626 0.163 -0.499

∂q̇

∂pi
-1.318 0.357 -0.839

Time optimal
∂q

∂pi
-0.154 0.074 -0.499

∂q̇

∂pi
-0.344 0.180 -1.109

7. Conclusion

In this paper, we optimized feedforward controllers for robustness to un-

certainty in the friction model. On both the one and two DOF system, we

eliminated the sensitivity of the final position of rest-to-rest motions to para-

metric uncertainty in the friction model. Interestingly, all motions that are
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robust to friction model uncertainty, first move away from the goal position be-

fore moving towards it. Such motions eliminate the sensitivity by reducing the

integral of the effect of the friction torque to zero.
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